
Institute for Defense Analyses
4850 Mark Center Drive Alexandria, Virginia 22311-1882

Linux Foundation

Core Infrastructure Initiative (CII)

Best Practices Badge

Dr. David A. Wheeler

2016-09-14

dwheeler @ ida.org

Personal: dwheeler @ dwheeler.com,

Twitter: drdavidawheeler

www.dwheeler.com

Open source software

 OSS: software licensed to users with these freedoms:

 to run the program for any purpose,

 to study and modify the program, and

 to freely redistribute copies of either the original or modified

program (without royalties to original author, etc.)

 Original term: “Free software” (confused with no-price)

 Other synonyms: libre sw, free-libre sw, FOSS, FLOSS

 Antonyms: proprietary software, closed software

 Widely used; OSS #1 or #2 in many markets

 “… plays a more critical role in the DoD than has generally been

recognized.” [MITRE 2003]

 OSS almost always commercial by law & regulation

 Software licensed to general public & has non-government use

 commercial software (in US law, per 41 USC 403)
1

Background

 It is not the case that “all OSS* is insecure” … or

that “all OSS is secure”

 Just like all other software, some OSS is (relatively)

secure.. and some is not

 Heartbleed vulnerability in OpenSSL

 Demonstrated in 2014 that some widely-used OSS

needs investment for security

 Linux Foundation created Core Infrastructure

Initiative (CII) in 2014

 “to fund and support critical elements of the global

information infrastructure”

2*OSS=Open source software

A little about the CII

 Multi-million dollar project

 Supported by many, e.g., Amazon Web Services,

Adobe, Bloomberg, Cisco, Dell, Facebook, Fujitsu,

Google, Hitachi, HP, Huawei, IBM, Intel, Microsoft,

NetApp, NEC, Qualcomm, RackSpace,

salesforce.com, and VMware

 Actions

 Collaboratively identifies & funds OSS projects in

need of assistance

 Allows developers to continue their work under

community norms

 Transitioning from point fixes to holistic solutions for

open source security
3

CII-funded investments in key OSS projects

 OpenSSL

 Funded key developers: improving security,

enabling outside reviews, & improving

responsiveness

 Working with the Open Crypto Audit Project,

has retained the NCC Group to audit

OpenSSL code

 OpenSSH

 GnuPG

 Network Time Protocol (NTP) daemon

 Linux Kernel Self Protection Project

 …

4

OpenSSL issues

Source: https://www.coreinfrastructure.org/grants

CII-funded projects with multi-project impacts

 The fuzzing project

 OWASP Zed Attack Proxy (ZAP) as a

service

 False-Positive-Free Testing with Frama-C

 Reproducible builds

 CII census (project quantitative analysis)

 Best practices badge (focus today)

5Source: https://www.coreinfrastructure.org/grants

CII Best Practices Badge

 OSS tends to be more secure if it follows good

security practices, undergoes peer review, etc.

 How can we encourage good practices?

 How can we know good practices are being followed?

 Badging project approach:

 Identified a set of best practices for OSS projects

 Best practices is for OSS projects (production side)

 Based on existing materials & practices

 Created web application: OSS projects self-certify

 If OSS project meets criteria, it gets a badge (scales!)

 Self-certification problems mitigated by automation, public

display of answers (for criticism), LF can override

6

Badge scoring system

 To obtain a badge, all:

 MUST and MUST NOT criteria (42/66) must be met

 SHOULD (10/66) met, OR unmet with justification

 Users can see those justifications & decide if that’s enough

 SUGGESTED (14/66) considered (met or unmet)

 People don’t like admitting they didn’t do something

 In some cases, URL required in justification (to point

to evidence; 8/66 require this)

 Currently one level (passing vs. in progress)

 Capture what well-run projects typically already do

 Not “they should do X, but no one does that”

 Intend to later add higher levels with stronger

requirements (gold/platinum?). ~annual updates 7

Criteria categories and examples (1)

1. Basics
 The software MUST be released as FLOSS*. [floss_license]

 It is SUGGESTED that any required license(s) be approved by

the Open Source Initiative (OSI). [floss_license_osi]

2. Change Control
 The project MUST have a version-controlled source repository

that is publicly readable and has a URL. [repo_public]

 Details: The URL MAY be the same as the project URL. The project

MAY use private (non-public) branches in specific cases while the

change is not publicly released (e.g., for fixing a vulnerability before

it is revealed to the public).

3. Reporting
 The project MUST publish the process for reporting

vulnerabilities on the project site. [vulnerability_report_process]

8
*FLOSS=Free/Libre/Open Source Software

Criteria categories and examples (2)

4. Quality
 If the software requires building for use, the project MUST

provide a working build system that can automatically rebuild

the software from source code. [build]

 The project MUST have at least one automated test suite that

is publicly released as FLOSS (this test suite may be

maintained as a separate FLOSS project). [test]

 The project MUST have a general policy (formal or not) that as

major new functionality is added, tests of that functionality

SHOULD be added to an automated test suite. [test_policy]

 The project MUST enable one or more compiler warning flags,

a "safe" language mode, or use a separate "linter" tool to look

for code quality errors or common simple mistakes, if there is

at least one FLOSS tool that can implement this criterion in the

selected language. [warnings]

9

Criteria categories and examples (3)

5. Security
 At least one of the primary developers MUST know of common

kinds of errors that lead to vulnerabilities in this kind of

software, as well as at least one method to counter or mitigate

each of them. [know_common_errors]

 The project's cryptographic software MUST use only

cryptographic protocols and algorithms that are publicly

published and reviewed by experts. [crypto_published]

 The project MUST use a delivery mechanism that counters

MITM attacks. Using https or ssh+scp is acceptable.

[delivery_mitm]

 There MUST be no unpatched vulnerabilities of medium or

high severity that have been publicly known for more than 60

days. [vulnerabilities_fixed_60_days]

10

Criteria categories and examples (4)

6. Analysis
 At least one static code analysis tool MUST be applied to any

proposed major production release of the software before its

release, if there is at least one FLOSS tool that implements this

criterion in the selected language… [static_analysis]

 It is SUGGESTED that the {static code analysis} tool include

rules or approaches to look for common vulnerabilities in the

analyzed language or environment.

[static_analysis_common_vulnerabilities]

 It is SUGGESTED that at least one dynamic analysis tool be

applied to any proposed major production release of the

software before its release. [dynamic_analysis]

11

Current state

 General availability announced May 2016

 As of 2016-09-14: 280 project entries

 35 are passing (100%), 63 are 90%+ (incl. 100%)

 Examples of current badge holders:

 BadgeApp (itself!)

 Node.js

 Linux kernel

 curl

 GitLab

 OpenSSL (pre-Heartbleed missed 1/3 criteria)

 Zephryr project

12Source: https://bestpractices.coreinfrastructure.org/projects

Sample impacts of CII badge process

 OWASP ZAP (web app scanner)

 Simon Bennetts: “[it] helped us improve ZAP quality… [it] helped us

focus on [areas] that needed most improvement.”

 Change: Significantly improved automated testing

 CommonMark (Markdown in PHP) changes:

 TLS for the website (& links from repository to it)

 Publishing the process for reporting vulnerabilities

 OPNFV (open network functions virtualization)

 Change: Replaced no-longer-secure crypto algorithms

 JSON for Modern C++

 “I really appreciate some formalized quality assurance which even

hobby projects can follow.”

 Change: Added explicit mention how to privately report errors

 Change: Added a static analysis check to continuous integration script

13Source: https://github.com/linuxfoundation/cii-best-practices-badge/wiki/Impacts

common

issues

CII badges are getting adopted!

14

Source: https://bestpractices.coreinfrastructure.org/project_stats

All

projects

Projects

with non-

trivial

progress

Daily

activity

BadgeApp security

 File “security.md” describes how we secure the web app

 Report vulnerabilities to designated people

 Requirements – simple, most data public
 Passwords stored in database only as iterated salted hashes

 Design: Showed that we applied design principles
 Simple, filter inputs

 Implementation
 Checked that it counters all of OWASP top 10

 Applied “Ruby on Rails Security Guide”

 Hardened (e.g., hardening HTTP headers)

 Verification
 Source code quality analyzer (rubocop, rails_best_practices), [static]

source code weakness analyzer (brakeman), web application scanner
(OWASP ZAP), 98% test coverage, OSS enables multi-person review

 Supply chain (reuse)
 Consider before use, bundle-audit (check known vulns), license_finder

 Strive to minimize/simplify transitive dependencies & size

 People

15

Future criteria, gold/platinum levels

 Probable future “passing” criteria include:

 It is SUGGESTED that hardening mechanisms be used so

software defects are less likely to result in security

vulnerabilities. [hardening]

 It is SUGGESTED that the project have a reproducible build.

[build_reproducible]

 Some potential gold/platinum criteria (doc/other.md):

 Active development community

 Bus factor >= 2

 Dependencies (including embedded dependencies) are

periodically checked for known vulnerabilities, & updated or

verified as unexploitable

 All changes reviewed by someone else before release

 Automated test suite has 100% branch coverage of source code

 Move SHOULD/SUGGESTED to MUST
16

Involved in OSS?

 If you lead an OSS project, what you do matters!

 People depend on the software you create

 The practices you apply affect the result

 Secure or quality software is not an accident

 If you’re considering using an OSS project

 Check on the project – should you use it?

 Badge criteria help

17

Key URLs

 CII

 https://www.coreinfrastructure.org

 CII best practices badge (get a badge):

 https://bestpractices.coreinfrastructure.org/

 CII best practices badge project:

 https://github.com/linuxfoundation/cii-best-

practices-badge

18

Backup

19

Mozilla Open Source Support (MOSS) relation

 Mozilla Open Source Support (MOSS) added

Secure Open Source (SOS) track

 Announced June 9, 2016

 “supports security audits for open source software

projects, and remedial work to rectify the problems

found”

 “support model is different from & complementary to

CII. [CII focuses on] deeper-dive investments into

core OS security infrastructure, while [SOS targets]

OSS projects with lower-hanging fruit security needs.”

 CII complements other efforts like MOSS

20

Sources: https://wiki.mozilla.org/MOSS/Secure_Open_Source

https://blog.mozilla.org/blog/2016/06/09/help-make-open-source-secure/

Badge criteria must be…

 Relevant

 Attainable by typical OSS projects

 Clear

 Include security-related criteria

 Consensus of developers & users

 Criteria & web app developed as OSS project

 Built on existing work, e.g., Karl Fogel’s Producing

Open Source Software

 Not hypocritical

 Our web app must get its own badge!

21

Worked with several projects, including the

Linux kernel & curl, to perform alpha test of criteria

Badge criteria must NOT be…

 Will NOT require any specific products or

services (especially proprietary ones)

 We intentionally don’t require git or GitHub

 That said, will automate many things if project

does use GitHub

 Will NOT require or forbid any particular

programming language

22

Describing criteria

 Criteria have different levels of importance

 MUST (NOT) – required (42/66)

 SHOULD (NOT) – sometimes valid to not do (10/66)

 SUGGESTED – common valid reasons, but at least

consider it (14/66)

 Criteria may have “details” (39/66)

 Give clarifications/examples, e.g., “MAY…”

 Each criterion is named (lowercase underscore)

 For each criterion, users answer:

 Status: Met, Unmet, Unknown (?), N/A*

 Justification: Markdown text. Usually optional

23
* N/A is only allowed for 21/66 criteria

BadgeApp: Home page

24

BadgeApp: List of projects

25

BadgeApp: Itself as a sample project

26

BadgeApp: Sample project (security tab)

27

EU-FOSSA project interactions with CII Badge

 EU-FOSSA = EU-Free and Open Source Software Auditing
 1M Euro project initiated by 2 Members of European Parliament

 Executed by European Commission (the European Union's
executive body)

 Goal: invest into commonly used OSS which might need support
in the security domain

 Intends to define a complete process to properly perform
code reviews within the European Institutions
 To execute one sample code review during Q3-Q4/2016

 Sample results will determine if activity could become a
continuous action of the European Institutions in the future

 FOSSA project exchanging experiences with CII

 FOSSA looking closely at the CII Badge criteria
 During definition of metrics to analyze sustainability and security

28

See: https://joinup.ec.europa.eu/community/eu-fossa/description and

https://fosdem.org/2016/schedule/event/fossa/

A few notes on the BadgeApp

 “BadgeApp” is simple web application that

implements the criteria (fill in form)

 OSS (MIT license)

 All libraries OSS & legal to add (checked with license_finder)

 Simple Ruby on Rails app

 Criteria info (text, category, etc.) in YAML

 Overall approach: Proactively counter mistakes

 Mistakes happen; we use a variety of tools,

automated test suite, processes to counter them

 Please contribute!

 See its CONTRIBUTING.md for more

29

